RiverWatchers

Monitoring the Ohio River Watershed

Outline

Ohio River and ORSANCO RiverWatchers Overview Chemistry Data Reporting Biological Monitoring

Ohio River Watershed

-981 miles

-7th longest river in U.S.

Ohio River Timeline

1670 –"La Belle Riviere" = "the beautiful river" "Oyo" = "great water"

ren na sense sens

- 1930's Ohio River = "open sewer"
 - Human and industrial waste
 - Less than 1% of communities provided waste water treatment
 - Little or no regulations on polluting discharges

Clean Streams Campaign

- City Cleanup by the Cincinnati Chamber of Commerce (1934)
 - Streams of the Ohio River not intended to serve as sewers!

ren μe service Annual service s Annual service s

- Why Clean the Ohio River?
 - Commerce
 - Public Health
 - Conservation
 - Recreation

Why ORSANCO?

Interstate water pollution control agency Compact signed in 1948...

 "...control and abate water pollution in the Ohio River Basin."

How do people use the river?

n de la servicie de la desta de la construir de la desta de la Ante de la construir de la const

Boating

Drinking Water

Transportation

Water Quality Issues

Point Source Pollution

Non-point Source Pollution

Invasive Species

POINT SOURCE 25% direct discharge from industry, sewage treatment plants, etc. easier to identify due to "end of pipe"

NONPOINT SOURCE 75%

માં મુખ્ય પ્રશ્ન પ્રશ્ન મુખ્ય કે આ પ્રશ્ન મુખ્ય કે બાદ કે બાદ મુખ્ય કે બાદ મુખ્ય કે બાદ મુખ્ય કે આ પ્રશ્ન મુખ્ય આ ગામ કે આ ગ આ દેવતા કે આ ગામના કે આ ગામ કે આ ગામ કે આ ગામના કે આ ગામના કે આ ગામ કે આ ગામના કે આ ગામના કે આ ગામ કે આ ગામના ક

> general runoff of water contaminated by poor land use, homes, streets, air, etc.

difficult to identify

Combined Sewer Overflow

-pipes carry sewage and storm water

-exceed capacity =
discharge into the river

An invisible problem...

Thermal Pollution:
49 power plants
Many points > 100 °F
Impairs DO levels

Non-point source pollution...

Nutrients

Zebra Mussels A Living Problem

તો અને અને પ્રગળ તે અને અને તો તે કે કે કો તો તે ક બન વર્તર કો માટલોન વર્તર કો માટલોન વર્તર કો માટલોન વર્તર કો માટલેનન વર્તર કો માટલેન વર્તર કો માટલેન વર્તર કો માટલ

Ontario Ministry of Natural Re

Zebra Mussel Distribution (1988)

విజిత్తింది. సినిమార్ స్రామింగ్ సినిమార్ సినిమార్ సినిమార్ సినిమార్ సినిమార్ సినిమార్ సినిమార్ సినిమార్ సినిమార సినిమార్ సిన సినిమార్ స్ట్లు ఎవటార్ సినిమార్ సినిమార్ సినిమార్ సినిమార్ సినిమార్ సినిమార్ సినిమార్ సినిమార్ సినిమార్ సినిమార

States with zebra mussels in inland and adjacent waters.

Zebra Mussel Distribution

States with zebra mussels in inland and adjacent water

٠

Zebra Mussel sighting
 Sightings from previous years

ORSANCO's Role...

"control & abate water pollution in the Ohio River Basin..."

്ക്ക്ക് പ്രതിന്റെ പ് പ്രതിന്റെ പ പ്രതിന്റെ പ

- Chemical TestsDissolved Oxygen
- Spill Detection
 - Predict movement of pollutants
- Bacteria
 - Measuring fecal coliform & E. coli
- Fish Surveys
 - Over 130 species!
- **Education Programs**
 - You can help too!

Locating point-sources...

Methylene chloride spill detected in Wurtland, KY (April 2007)

Chemical Detectives at ORSANCO!

Role of RiverWatchers "Watchdogs" for ORSANCO Created in 1992 with 5 groups

Sampling Ohio River AND tributaries Water chemistry for river "check-up" Monitor 5 times each year and enter data online REAL SCIENCE!

Historical RiverWatchers Locations

Water Chemistry

WQI Score

Excellent

Good

Medium

Bad or Very Bad

8 Parameters (Parts)

- Biochemical Oxygen Demand (BOD-5)
- Dissolved Oxygen
- Total Phosphate
- Nitrate
- Turbidity
- 🔳 E. coli
- ∎ pH

Water Temperature Change

Putting it all together...

Dissolved Oxygen Requirements for Fish

< 3mg/L Too LOW for fish to live here

10

3.0-5.0 mg/L Stressful for fish

6.0 mg/L Supports Spawning

2.0 3.0 4.0 5.0 6.0 7.0 8.0 9.0 10.0 11

7.0 mg/L Fish can grow and are active

9.0 mg/L
Supports
many,
healthy fish
populations

pH Requirements for Fish & Macroinvertebrates 1 2 3 4 5 6 7 8 9 10 11 12 13 14 Most Acidic Neutral Most Basic

విరుగు విశోతులు విరుగు వరితులు వరిగు వరితులు విరుగు వరితులు వరిగు వరితులు వరిగు వరితులు వరిగు సంవరితులు వరిగు వ వరుగు సాజా సారుగు సారుగు సా మారుగు సారుగు సారుగు సారుగు మారుగులు సరుగు ప్రతులు సారుగు సాజా సారుగు సారుగు సాలుగు సాలు సాలు సాలు సాలు సారుగు

Bacteria

Plants

Carp, suckers, catfish, some insects

Bass, crappie

Snails, clams, mussels

Largest variety of animals (caddisfly, stonefly, mayfly)

Nitrates

Excessive amounts \rightarrow *eutrophication*

Main source = Sewage

Additional sources include:

Fertilizers / runoff from agricultural areas

Ohio River Norms = 0-13 mg/L

Phosphate and nitrate
Read number on the color wheel
Look at the light for best results
Nitrate = red color
Phosphate = blue color

Reading E. coliplates

విస్తు సినిమార్ నిషిమార్ సినిమార్ సిన

Interpreting the Plates		
What to count as <i>E. coli</i>	What not to count as <i>E. coli</i>	
Purple, no halo	White	
Purple with pink halo	Pink, no halo	
Purple with purple halo	Pink with pink halo	
Blue or dark blue, no halo	Teal green	
Blue with purple or pink halo	Pinpoints •	
Dark blue with teal halo	Teal with teal halo	
Actual size of countable colonies = 1-2 mm.	<i>E. coli</i> /100 ml = $\frac{(\text{\# colonies counted x 100})}{\text{size of sample in ml}}$	
	What to count as E. coli Purple, no halo Purple with pink halo Purple with purple halo Purple with purple halo Blue or dark blue, no halo Dark blue with teal halo Actual size of countable colonies = 1-2 mm.	

Q-Value Charts and Tables

n ng san bang sa ban bang sa ban bang sa bang sa ban bang sa b Ing sa bang sa Ing sa bang sa

DO (% Saturation)	Q-Value			
0	0			
10	8			
20	13			
30	20			
40	30			
50	43			
60	56			
70	77			
80	88			
85	92			
90	95			
95	97.5			
100	99			
105	98			
110	95			
120	90			
130	85			
140	78			
>140	50			

RiverWatchers Water Quality Scores

Test R	Results	Q-Value		Weighting		Calculation
Dissolved Oxygen	7.5 mg/L 85 % saturation	92	х	Factor .18	=	16.56
<i>E.</i> coli	colonies/100ml		х	.17	=	<u> </u>
рН	8.0 units	82	х	.12	=	9.84
B.O.D. 5	mg/L	80	х	.12	=	9.6
H ₂ O Temp Change	0.67 change in°C	90	х	.11	=	9.9
Total Phosphate	mg/L		х	.11	=	
Nitrate (NO₃)	mg/L	51	х	.10	=	5.1
Turbidity	28 NTU's	53	х	.09	=	4.77

Once the calculations are completed for each parameter, you can then sum the Weighting Factor column and the Calculation column. Divide the total of the *Calculation* column by the total of the *Weighting Factor* column to obtain the Water Quality Index (WQI).

Excellent	90 - 100%	Bad	25 - 50%
Good	70 - 90%	Very Bad	0 - 25%
Medium	50 - 70%		

WATER QUALITY INDEX RATING

TOTALS

* You may perform as many of the following tests as you wish; however, at least 6 must be completed to obtain a Total Water Quality Index Value. Divide the total of the Calculation column by the total of the Weighting Factor column to obtain the Water Quality Index Rating. IF YOU DO NOT HAVE DATA FOR A TEST. PLEASE LEAVE THE FIELD BLANK.

What about biology? Aquatic Life Bioassessments Fish Populations Macroinvertebrates

માં તે મુંચ પ્રત્યા પ્રાપ્ય કરે છે. તે મુંચ પ્રાપ્ય કરે છે. તે મુંચ પ્રાપ્ય કરે છે. તે મુંચ પ્રાપ્ય કરે છે. તે આ ગામ કરે છે. તે મુંચ પ્રાપ્ય કરે છે. તે માં આ ગામ કરે છે. માં આ ગામ કરે છે. તે માં આ ગામમાં દેવી પ્રાપ્ય કરે છે આ ગામમાં દુરુષ માં આ ગામમાં દુરુષ માં આ ગામમાં કરે છે. માં આ ગામમાં દુરુષ માં આ ગામમાં દુરુષ માં આ ગામમાં દુરુષ

Some are sensitive to pollution!

Which Pool Is in Your Backyard?

Electrofishing

ي هندي سوائي بو هندي سوائي به کار سوائي بو هندي سوائي بو کې د مري مري سولي کې د نو سولي کې د نو سولي کې کې سولي کې د نو سولي کې د نو سولي سولي سولي کې کې سولي کې سولي کې سول مو سولي کې د نو سولي کې کې کې د نو سولي کې کې سولي کې کې سولي کې کې کې کې کې کې کې کې سولي کې کې کې کې کې کې کې

Macroinvertebrates

ે મુંદ્ર છે. આ ગામ પ્રતાસ કે બાદ પ્રતાસ પ્રતાસ કે બાદ પ્રતાસ પ્રતાસ કે બાદ પ્રતાસ કે બાદ પ્રતાસ કે બાદ પ્રતાસ ક આ ગામ આ ગ આ ગામ આ ગા

Other Education Programs...

River Sweep

Mobile Aquarium

